Metabolic Engineering; Fermentation Physiology, Fermentation Technology

  • 13:30 (1Ip01)
    Development of a versatile host hyper-producing heterologous natural products in Aspergillus oryzae by large-scale metabolic engineering based on genome editing
    …… ○Naoya Saito1, Takuya Katayama1,2, Atsushi Minami3, Hideaki Oikawa4, Jun-ichi Maruyama1,2 (1Grad. Sch. Agric. Life Sci., Univ. Tokyo, 2CRIIM, UTokyo, 3Grad. Sch. Sci., Hokkaido Univ., 4Sch. Biotechnol.Wuyi Univ.)

  • 13:42 (1Ip02)
    alpha-Tomatine degradation to tomatidine by food-related Aspergillus species belonging to the section Nigri
    …… ○Chun Wai Hui1, Yuki Nakatani1,2, Jun Ogawa1, Shigenobu Kishino1 (1Grad. Sch. Agric., Kyoto Univ., 2Kagome Co., Ltd.)

  • 13:54 (1Ip03)
    Metabolic engineering of the organic solvent tolerant microorganism, Kocuria rhizophila DC2201 for producing astaxanthin
    …… ○Hiroshi Toda, Tamotsu Kanai (Fac. Eng., Toyama Pref. Univ.)

  • 14:06 (1Ip04)
    Development of genetic engineering technology for polyketide production in Escherichia coli
    …… ○Itsuki Tomita1, Takahiro Bamba2, Akihiko Kondou1,2,3, Tomohisa Hasunuma1,2 (1Grad. Sch. Sci. Technol. Innov., Kobe Univ., 2EGBRC, Kobe Univ.,, 3CSRS, RIKENS)

  • 14:18 (1Ip05)
    Development of cis,cis-muconic acid high-producing strains using Escherichia coli as a host
    …… ○Natsuki Morishima1, Takahiro Bamba2, Tomohisa Hasunuma1,2, Akihiko Kondo1,2,3 (1Grad. Sch. Sci. Technol. Innov., Kobe Univ., 2EGBRC, Kobe Univ.,, 3CSRS, RIKENS)

  • 14:30  Break
  • 14:42 (1Ip06)
    Metabolic pathway engineering for butyrolactam production in Escherichia coli harboring the non-oxidative glycolysis
    …… ○Kenta Miyoshi, Kinuka Isshiki, Teppei Niide, Yoshihiro Toya, Hiroshi Shimizu (Grad. Sch. IST, Osaka Univ.)

  • 14:54 (1Ip07)
    Genetic strategy for construction of Rhodobacter sphaeroides overproducing 5-aminolevulinic acid without exogenous-DNA insertion
    …… ○Takuma Kojima1,2, Shinji Masuda2 (1Neopharma Japan Co., Ltd., 2Sch. Life Sci. Technol, Tokyo Tech)

  • 15:06 (1Ip08)
    Energy metabolic engineering of Escherichia coli for the enhancement of 1,3-butanediol production
    …… ○Naoya Kataoka1,2, Tomoya Maeda3, Masaru Wada4, Atsushi Yokota3, Kazunobu Matsushita2,5, Toshiharu Yakushi1,2 (1Org. Res. Initiatives, Yamaguchi Univ., 2RCTMR, Yamaguchi Univ., 3Grad. Sch. Agric., Hokkaido Univ., 4Fac. Agric., Setsunan Univ., 5Fac. Agric., Yamaguchi Univ.)

  • 15:18 (1Ip09)
    Development of a metabolically engineered strain of isopropanol-producing Moorella thermoacetica for gas fermentation
    …… ○Takeshi Matsuo1, Junya Kato2, Setsu Kato1, Kaisei Takemura1, Tatsuya Fujii2, Keisuke Wada2, Masahiro Watanabe2, Yusuke Nakamichi2, Yoshiteru Aoi1, Akinori Matsushika2, Tomotake Morita2, Katsuji Murakami2, Yutaka Nakashimada1 (1Grad. Sch. Integr. Sci. Life, Hiroshima Univ., 2AIST)

  • 15:30 (1Ip10)
    Molecular breeding of the anaerobic bacterium Moorella thermoacetica to enhance the oxygen tolerance
    …… ○Hayato Ishida1, Junya Kato2, Setsu Kato1, Tatsuya Fujii2, Keisuke Wada2, Masahiro Watanabe2, Yusuke Nakamichi2, Yoshiteru Aoi1, Akinori Matsushika2, Tomotake Morita2, Katsuji Murakami2, Yutaka Nakashimada1 (1Grad. Sch. Integr. Sci. Life, Hiroshima Univ., 2AIST)

  • 15:42  Break
  • 15:54 (1Ip11)
    Engineering Cupriavidus necator H16 to increase Polyhydroxybutyrate production from CO2
    …… ○Naoki Abekawa1, Tomohiro Mochizukki2, Ryota Hidese2, AKihiko Kondo1,2,3, Tomohiro Hasunuma1,2 (1Grad. Sch. Sci. Technol. Innov., Kobe Univ., 2EGBRC, Kobe Univ.,, 3CSRS, RIKENS)

  • 16:06 (1Ip12)
    Construction of new synthetic pathway for C4-based (4-hydroxybutyrate) biopolymers from sugar
    …… ○Kai-Hee Huong, Orita Izumi, Fukui Toshiaki (Sch. Life Sci. Technol, Tokyo Tech)

  • 16:18 (1Ip13)
    Metabolisms of 2-hydroxybutyrate (2HB) and biosynthesis of 2HB-containing sequence-regulated polyhydroxyalkanoates (PHAs) by engineered Ralstonia eutropha
    …… ○Shizuru Ishihara1, Izumi Orita1, Ken’ichiro Matsumoto2, Toshiaki Fukui1 (1Sch. Life Sci. Technol, Tokyo Tech, 2Grad. Sch. Eng., Hokkaido Univ.)

  • 16:30 (1Ip14)
    Metabolic engineering of aspartate-derived amino acid biosynthetic pathway improves salt-stress tolerance in the ectoine-deficient Halomonas elongata
    …… ○Yunheu Joo1, Hideki Nakayama1,2,3 (1Grad. Sch. Fish. Sci. Environ. Stud., Nagasaki Univ., 2Inst. Sic. Technol., Nagasaki Univ., 3Org. Marine Sci. Techonol., Nagasaki Univ.)

  • 16:42 (1Ip15)
    High-salinity induced overproduction of L-proline improves salt-stress tolerance of engineered ectoine-deficient Halomonas elongata
    …… ○Khanh Huynh Cong, Hideki Nakayama (Grad. Sch. Fish. Sci. Environ. Stud., Nagasaki Univ.)

  • 16:54 (1Ip16)
    Improved production of GABA by engineered Halomonas elongata GOP-Gad strain cell factory from waste biomass
    …… ○Ziyan Zou1, Hideki Nakayama1,2,3 (1Grad. Sch. Fish. Environ. Sci., Nagasaki Univ., 2Inst. Sci. Technol., Nagasaki Univ., 3Org. Marine Sci. Technol., Nagasaki Univ.)