細菌が放出するナノサイズの細胞外膜小胞を視る

はじめに

細菌は、一見すると、それぞれが個別に活動する単細 胞の単純な生物と捉えられがちであるが、多細胞生物と は異なった方法で集団を形成し、"賢い"生存戦略を取っ ている.近年、細菌が環境中に放出するメンブレンベシ クル (MV) と呼ばれる小さな袋状の膜小胞が、その細 南の集団生活の制御に重要な役割を果たしていることが 明らかになってきた.細菌が放出するMVの多様な役割 が明らかになるにつれて、その分子機構を理解するため にMVの分子レベルの実態を解明する必要性が高まって いる. また、細菌への物質輸送を可能にするMVの特性 は、ワクチンやドラッグデリバリーなどの応用研究の分 野でも注目されている. その一方で、MV粒子一つひと つの性質や、ナノメートルサイズのMVがどのように機 能を果たすのかを調べる方法は限られている。本稿では MVの実態を明らかにするための高速原子間力顕微鏡 (高速AFM)を用いた新たな研究手法とそこから得られ た最新の研究成果を紹介する.

細菌が産出するメンブレンベシクルの役割

MVとは、細菌が放出する直径20から400 nm 程度の 細胞外膜小胞であり、主にリン脂質膜、膜タンパク質な どで構成された小胞と、小胞内部に含有される遺伝物質 (DNAやRNA) や細胞質由来のタンパク質、シグナル 分子などからなる^{1,2)}. 細菌が細胞外に小胞を放出する ことが報告されたのは、50年以上前で、電子顕微鏡観 察によって細胞外膜小胞が確認されている³⁾. その後, グラム陰性細菌およびグラム陽性細菌による MV 生産が 報告され、現在ではMVの放出は多くの細菌で保存され た現象であると考えられている.細胞外に放出された MVは、細胞の生存戦略において、さまざまな役割を持 つ. たとえば、バイオフィルムを構成するための細胞外 マトリックスの提供や、細菌を標的とする抗生物質やウ イルスから細菌自身を防御するための囮としての役割. さらに、遺伝子の水平伝搬、毒素の運搬、細胞間コミュ ニケーションなどで細胞から細胞へ渡される物質の運び 手としても働く^{1,2)}. MVを介した物質の輸送には以下 のような利点がある.溶液中では拡散性が低い疎水性物

菊池 洋輔・田岡 東*

質を効率的に運搬できる.また、内容物の濃度を維持したまま輸送ができ、加えて、細胞外環境中で受けるストレスから運搬物を保護する働きもある.興味深いことに、 MVはクオラムセンシングと呼ばれる細胞間コミュニケーションのための化学物質の輸送を担っているが、 1個のMV粒子には、1個の細胞の遺伝子発現を誘導できる十分な量の情報伝達物質が含まれている⁴⁾.さらに、 MVによる輸送には細胞選択性があり、細菌種特異的な物質輸送が行われることが示唆されている^{5,6)}.つまり、 細菌が放出するMVは効率的に情報伝達を行うことので きるメッセンジャーであるといえ、それ故に情報伝達に 関わるMVの特性を調べることは、細菌集団制御の分子 メカニズムの理解につながる.

これまでの研究でのMVのキャラクタライゼーション は、質量分析による化学組成分析や、密度勾配遠心分離 法による密度測定、ゼータ電位測定によるMV表面電荷 測定が行われており、MVを構成するタンパク質、脂質 などの組成や、MVの表面電荷、密度などの物理化学的 特性のバルク解析が行われてきた。一方、MV1粒子を ターゲットとして物理化学的特性を調べた研究は報告さ れていない、小さく壊れやすいMVの1粒子解析を行う ためには、生体試料を低侵襲的に、かつ高分解能で観察 できる顕微鏡技術が必要である。

高速原子間力顕微鏡とは

原子間力顕微鏡 (AFM) は、走査型プローブ顕微鏡の 一種で、試料とプローブ (探針)の間に働く力を検出す ることで、画像を得る顕微鏡である⁷⁾. 走査型プローブ 顕微鏡は、基板上に固定された試料の表面をプローブが 水平方向に走査することでイメージングを行う. AFM のプローブは、カンチレバー (Cantilever:片持ち梁の意 味)の先端に付いた先端半径約5 nmの尖った針であり、 このプローブが試料表面に接触した時のカンチレバーの たわみから、プローブ—試料間の原子間力の検出を行う (図1A). この原子間力はあらゆる物質とプローブ間に 働くため、AFM観察ではあらかじめ試料の表面処理を する必要がない. また、常温常圧の液体中での測定がで きることから、AFMはタンパク質や核酸、細胞などの 生体試料を、凍結、乾燥、染色など試料にダメージを与

 著者紹介 金沢大学理工研究域生命理工学系・ナノ生命科学研究所(准教授) E-mail: aztaoka@staff.kanazawa-u.ac.jp ERATO野村集団微生物制御プロジェクト デバイス開発・イメージンググループ(サブグループリーダー)
 生物工学 第98巻 第7号 (2020)

える操作を行うことなく、ネイティブな状態の試料の表 面構造を高い分解能で観察できる。特に高速AFMは、 緩衝液や培養液中などの生理的条件下で柔らかい生体分 子の構造とその動態を可視化することに特化した顕微鏡 で、金沢大学ナノ生命科学研究所 (NanoLSI) の安藤教 授の研究グループによって開発された⁸⁾.彼らは、生体 分子の構造動態を捉えるための画像取得速度の飛躍的な 向上と生体分子への低侵襲性を、高感度で低いばね定数 を持つカンチレバーの開発,シグナル検出速度や装置全 体の制御速度の向上により解決した. その結果, 高い空 間分解能(水平方向で2~3 nm, 鉛直方向で約0.1 nm) と現状の構成部品でほぼ理論限界である 50 msec/frame のイメージング速度での観察が可能な高速AFMが開発 された⁸⁻¹⁰⁾. 高速AFMでの観察中に試料に与える力は、 最大でも100 pN (ピコニュートン) であり、柔らかい生 体試料を破壊することなく観察できる. 私たちはこの高 速AFMを用いて、緩衝液中の生きた細菌細胞(図1B) や細菌培養液から単離したMV (図1C)の観察を行った. AFM画像では、試料表面の凹凸を色調で表している. 図1では黒色に近いほど高さが低い場所で、白色に近い ほど高い場所を示す. これまでに、私たちは高速AFM を用いて生きた細菌細胞のナノメートルサイズの表面構 造の観察に成功している^{11,12)}.また,高速AFMにより

直径が100 nm以下の小さなMVを溶液中で壊すことな く観察できた.

位相モードによる物性イメージング

AFMには、プローブと試料間に働く力の変化から、 試料表面の物理的性質や化学組成分布を可視化するいく つかの測定モードがある¹³⁾. 位相モードはその一つで, 共振周波数付近の励起信号によって振動するカンチレ バーが, 試料に接触した時の振動の変化を検出し, 励起 信号に対する位相差(位相の遅れ)を測定し(図2A). この位相差の情報を画像化する¹⁴⁾. 位相差は試料表面の 吸着性や、粘弾性などの物理的特性の違いに依存するた め、試料表面のこれらの物性の分布をイメージングでき る (図2B). すなわち、ナノメートルサイズの微小な構 造の表面の吸着性や硬さを画像上にマッピングして調べ ることができる. 位相モードは. 主に表面科学やマテリ アルサイエンスの分野で、表面組成に不均一性がある試 料の解析に用いられている^{15,16)}.本研究では、これを生 体試料の観察に応用した. 位相差の値に大きな影響を与 える物性の種類は、測定条件によって異なる.本研究で 用いた観察条件で、液体中の試料表面を観察した時に生 じる位相差の主な原因は、プローブと試料表面の間の吸 着力である¹⁷⁾.この吸着性の違いは、試料を構成する物

図1. 高速原子間力顕微鏡観察 (高速AFM). (A) 高速AFMの 模式図. (B) 緩衝液中で観察した Paracoccus denitrificans 細胞 のAFM像 (形状像). (C) P. denitrificansの培養液から単離した MVのAFM像 (形状像).

図2. 原子間力顕微鏡の位相モード.(A) 位相差の値の検出方 法の模式図.(B) 物性の差が異なる2種類の小胞を測定したと きの位相差の値(位相の遅れ)への影響.プローブとの相互作 用が強い小胞(すなわち,吸着性が高いまたは柔らかい小胞) ほど位相差の値が大きくなる.

質の化学組成の違いによって生じるので、高速AFMの 位相像では試料表面の組成分布やその違いを調べること ができる.

メンブレンベシクル1粒子の物性を調べる

私たちは、高速AFMの位相モードを用いて、溶液中のMV1粒子の物性を定量的に解析した¹⁸⁾. Paracoccus denitrificansの培養液から単離したMVをマイカ基板上に固定しPBS緩衝液中でAFM観察した. 図3に、位相像と形状像、およびそれらのマージ像を示した. 位相像の色調の違いは物性の違いを示しており、位相像において個々のMV粒子の色調が異なっていることに注目して欲しい.マージ像では、赤っぽいMV粒子は吸着性/粘

図3. 高速AFM位相モードによるMVの物性イメージング. 形状像は試料の構造を, 位相像は試料の物性を表わしている. マージ像の色彩の違いは個々のMVの物性多様性を示している.

弾性が低いことを、緑っぽいMV粒子は吸着性/粘弾性 が高いことを表している。この結果は、同じ種の細菌が 培養液中にさまざまな性質のMVを放出することを示し ており、細菌が放出するMVの不均一性を初めて実証し た.次に、私たちは、位相像からMV1粒子の物性を定 量的に解析する手法を開発した¹⁸⁾. MVを観察する際に、 試料中に内部標準物としてポリスチレン製の微小なビー ズを混ぜておき、このビーズとマイカ表面の位相差の値 を基準値として、一つひとつのMVの位相差の値を定量 的に表した.これにより、試料間のMVの物性値やその 分布の比較が可能になった. そこで、3種のグラム陰性 細菌 (大腸菌, 緑膿菌, P. denitrificans) と1種のグラム 陽性細菌(枯草菌)が放出したMVの物性を調べて比較 したところ、調べたすべての細菌が物性の異なる不均一 なMVを産生すること、それぞれの細菌が産生するMV の物性分布には種間での違いがあり、MVに種特異的な 物性があることが明らかになった¹⁸⁾. 詳細なMVの物性 分布は4種の細菌とも異なるが、全体的な特徴として大 腸菌とP. denitrificans が産生した MV は、他の2種の細 菌と比較して接着性に富むことが分かった¹⁸⁾.

近年では、細菌の放出するMVに多岐にわたる機能が あること^{1,2)}、さらに、MVを放出する仕組みに複数の 経路があることが明らかになったことから¹⁹⁾、MVその もの性質にも多様性があると考えられている²⁰⁾.これを 実証するため、MVの性質を生理的環境に近い溶液中で ナノメートルレベルの分解能で解析できる新しい手法の 開発が必要であった.本研究の結果、細菌が物性の異な る複数のタイプのMVを放出することを初めて実験的に 確かめることができた.MV1粒子の物性解析は、MV

図4. 高速AFM生細胞イメージングを用いたMV結合過程の観察. (A) P. denitrificans細胞をマイカ表面に固定し, 観察溶液にMV を添加する前と, 添加して約20分後の同じ細胞の形状像と位相像を示した. (B) パネルA形状像のab間の高さのラインプロファイル. (C) パネルA位相像のab間の位相差値のラインプロファイル.

が多様な機能を発揮するメカニズムを解明するための有 用な情報を提供することが期待される.

細菌表面へのメンブレンベシクルの結合過程を視る

宿主の細胞から放出されたMVは、環境中を漂い、最 終的には標的細胞に付着し融合することで内包する物質 の輸送を行うと考えられている、しかしながら、実際に MV粒子が標的細胞へ結合する過程を観察した報告はな い. そこで、私たちは、高速AFMを用いた生細胞イメー ジング^{11,12)}と位相イメージングを組み合わせて、生きた 細胞の表面にMVが吸着する様子を観察した.まず、P. denitrificans細胞をポリ-L-リジンで処理したマイカ基 板上にのせ、緩衝液中で細胞表面を観察する. その後、 観察チャンバー内に単離したMVを添加し、細胞表面の 構造変化を形状像と位相像で観察した(図4). MV添加 前,形状像では細胞の表面は滑らかで,位相像では少数 の粒子状の構造(外膜上のタンパク質と考えられるが構 成成分は不明)が見られた(図4A). MV添加後,同じ 細胞を観察したところ、形状像と位相像で明確に細胞表 面に粒子状の構造が増加していることが確認できた (図4B). これらの粒子状構造の高さは10~30 nmで、 添加したMV試料の高さ分布と一致した. さらに、位相 像では高いコントラストで粒子状構造が観察されてお り、MVと細胞表面に物性の違いがあることが分かった (図4C).現在は、高速AFMによる生細胞位相イメージ ングによる細胞表面へのMV融合過程とMVによる物質 輸送機構の直接観察に挑んでいる.

おわりに

本稿では、試料の物性の違いを検出するAFM位相イ メージングを利用した、MVの1粒子物性解析や、MV 結合の生細胞イメージングの結果について紹介した。細 胞間相互作用と密接に関わるMVの特性を分子レベルで 研究することは、細菌集団の制御メカニズムの分子基盤 を理解するために必要である。また、ここで紹介した手 法は、細菌が放出したMVだけでなく、真核生物が産生 する細胞外小胞(エキソソームやアポトーシス小胞、マ イクロベシクル),またウイルス粒子などの光学顕微鏡 での観察が困難な大きさで、もろい粒子状の構造物の観 察にも応用できる.細胞外膜小胞の放出は細菌だけでな く、アーキア²¹⁾,真核生物²²⁾などのすべてのドメイン で保存されており、本手法の多様な細胞外膜小胞をター ゲットとした研究への応用が期待できる.

謝 辞

本研究は、科学技術振興機構 (JST)の戦略的創造研究推進事 業ERATO「野村集団微生物制御プロジェクト」(JPMJER1502, 研究総括:野村暢彦)および文部科学省世界トップレベル研究 拠点プログラム (WPI-NanoLSI)の支援を受けて実施されまし た.また、筑波大学の野村暢彦教授はじめ野村集団微生物制 御プロジェクトの共同研究者の皆様、金沢大学の安藤敏夫特 任教授、古寺哲幸教授に対し、心から感謝を申し上げます.

文 献

- Toyofuku, M. et al.: Adv. Colloid Interface Sci., 226, 65 (2015).
- Schwechheimer, C. *et al.*: *Nat. Rev. Microbiol.*, **13**, 605 (2015).
- 3) Bladen, H. A. et al.: J. Bacteriol., 86, 1339 (1963).
- 4) Toyofuku, M. et al.: ISME J., 11, 1504 (2017).
- 5) Tashiro, Y. et al.: Front. Microbiol., 8, 571 (2017).
- 6) 森永花菜ら:生物工学,**96**,451 (2018).
- 7) Binnig, G. et al.: Phys. Rev. Lett., 56, 930 (1986).
- 8) Ando, T. et al.: Prog. Surf. Sci., 83, 337 (2008).
- 9) Uchihashi, T. Nat. Protoc., 7, 1193 (2012).
- 10) 安藤敏夫:1分子生物学(原田慶恵,石渡信一編),
 p.239, 化学同人(2014).
- 11) 田岡 東ら: 化学と生物, 53, 293 (2015).
- 12) Yamashita, H. et al.: J. Mol. Biol., 422. 300 (2012).
- 13) Dufrêne, Y. F. et al.: Nat. Nanotechnol., 12, 295 (2017).
- 14) Garciá, R. et al.: Nat. Mater., 6, 405 (2007).
- 15) Magonov, S. N. et al.: Surf. Sci., 375, L385 (1997).
- 16) Connell S. D. et al.: Mol. Membr. Biol., 23, 17 (2006).
- 17) Uchihashi, T. and Ando, T.: *Appl. Phys. Lett.*, **89**, 213112 (2006).
- 18) Kikuchi, Y. et al.: Nanoscale, 12, 7950 (2020).
- 19) Turnbull, L. et al.: Nat. Commun., 7, 11220 (2017).
- 20) Toyofuku, M. et al.: Nat. Rev. Microbiol., 17, 12 (2019).
- 21) Ellen, A. F. et al.: Archaea, 2010, 608243 (2010).
- 22) Théry, C. et al.: Nat. Rev. Immunol., 2, 569 (2002).