アミノ酸分析に向けたトリプトファン酸化酵素の高機能化

はじめに

アミノ酸は生体の構成成分としてきわめて重要であ り、生体内のアミノ酸濃度は健康状態の指標となり得る ことから、アミノ酸濃度の分析はさまざまな分野におけ る研究開発や臨床の現場において大きな意義を有する. たとえば、先天性アミノ酸代謝異常であるフェニルケト ン尿症における血中フェニルアラニンの上昇や、肝硬変 における総分岐鎖アミノ酸/チロシンモル比(BTR)の 上昇は、診断項目の一種としてすでに広く世界中で用い られている¹⁻⁵⁾. さらに近年では、アミノ酸濃度の変動 と糖尿病やがんをはじめとするさまざまな疾患との関連 が報告されている⁶⁻⁷⁾.

アミノ酸の分析法は1940年代のクロマトグラフィー による分離を端緒として盛んに研究開発がなされてお り、1958年にはすでにアミノ酸自動分析計が開発され ている⁸⁻¹⁰⁾.また近年では、液体クロマトグラフィータ ンデム質量分析装置(LC-MS/MS)を用いた高感度検 出法が報告されている¹¹⁾.しかしながら、これらの装置 は大型かつ高価であるうえ、試料の前処理や分析結果の 解析には専門知識と習熟を必要とするため、アミノ酸分 析の機会は非常に限られているという課題があった.

これらの課題を解決し、アミノ酸分析を身近なものに するには、アミノ酸代謝酵素を用いたアミノ酸分析法が 有用である.アミノ酸代謝酵素を用いた手法で鍵となる のは、言うまでもなく酵素の性質であり、正確性および 精度の高い分析法確立のためには、特異性と安定性の優 れた産業用酵素の創出が必要である.産業用酵素の創出 に向けた酵素工学的・構造生物学的なアプローチを効率 よく行うには、アミノ酸代謝酵素の科学的知見を蓄積す ることが重要となる.本稿では、必須アミノ酸の一種で あり、ヒト血漿中の濃度が肥満や精神疾患と関連するこ とが報告されている¹²⁻¹⁴⁾トリプトファン(Trp)を題材 として、測定用酵素であるL体Trp酸化酵素の高機能化 による安定化と、構造解析によって得られた知見を紹介 する¹⁵.

酵素法によるTrp分析

これまでTrpの酵素法による簡便な分析法として

山口 浩輝*・高橋 一敏

Coprinus sp. 由来のTrp酸化酵素を用いた報告例はあるも のの、基質特異性が高くなく分析精度に課題があった¹⁶. そこで、浅野らはChromobacterium violaceum由来Trp 酸化酵素(以下VioA)に着目し、Trpとの反応によっ て生成する過酸化水素を検出することにより、簡便に Trpを定量できる方法を開発した¹⁷⁾. VioAは非常に高 い基質特異性を有しており、血漿のような夾雑成分を多 量に含む試料中のTrp濃度であっても正確に分析するこ とができたが、安定性を向上させることが産業利用への 課題であった¹⁷⁾.

酵素高機能化

VioAの保存安定性の改善を目指し、筆者らはアミノ 酸変異導入によるVioAの安定化を行った.近年. Füllerら, Laiらにより VioA 野生型の立体構造がそれぞ れ報告されたが¹⁸⁻¹⁹⁾,筆者らが研究を開始した当初は, VioAの立体構造の報告例はなく、近縁種の構造も Protein Data Bank (PDB) へ登録されていなかったため、 ホモロジーモデリングは困難であった. そこで、システ インの酸化が不安定性の一因であると仮説をたて、過去 の報告²⁰⁾を参考にVioAの7か所のシステイン残基すべ てを、1残基ずつの点変異導入により、それぞれアラニ ン、バリン、スレオニンへと置換して安定性を評価した. 各変異体の45°C, 15分間の熱処理後の残存活性を比較 したところ、VioA (C395A) は野生型と比較して3.4 倍の残存活性を有し,評価した変異体の中でもっとも顕 著な熱安定性の向上が見られた(図1).融解温度は野生 型が45.7°Cであるのに対しVioA(C395A)は49.3°C であった¹⁵⁾. さらに,野生型において課題であった保存 安定性をアレニウスの式を用いた加速試験で評価したと ころ、野生型およびVioA (C395A)の半減期はそれぞ れ49日、452日であり、VioA (C395A) は野生型の約 9倍の保存安定性を有することが示唆された¹⁵⁾.

VioAの特徴である基質特異性を評価したところ, 標準アミノ酸20種類においてTrp以外のアミノ酸 (100 μ M)に対する反応性は検出されず,野生型と同等 の高い基質特異性が保持されていることが確認できた¹⁵⁾. また,野生型とVioA(C395A)のTrp反応に対する 速度論的パラメータを求めたところ, K_m はそれぞれ

図1. VioA変異体の評価結果.野生型の結果を1(点線)とした際の,各変異体の活性(黒色)および45°C,15分間の熱処 理後の残存活性(灰色). ※先行文献の図¹⁵⁾を改変.

表1. ヒト血漿中のTrp濃度定量

	ヒト血漿*		
	i	ii	iii
Trp 濃度(µM)	51.2	36.9	33.6
CV (%)	0.8	3.2	1.3
乖離率 [†] (%)	0.4	0.2	2.9

 * i, プール血漿, ii, 個別血漿 (男性), iii, 個別血漿 (女性)
[†] アミノ酸アナライザー定量値を真値とした際の乖離率. ※先 行文献の表¹⁵⁾を改変.

109.4 μ M, 93.9 μ M, k_{cat} / K_m は4.5 × 10³ M⁻¹·s⁻¹, 4.6 × 10³ M⁻¹·s⁻¹ であり, VioAの触媒能にも大きな変化は 見られなかった¹⁵⁾.

ヒト血漿中のトリプトファン濃度定量

VioA (C395A) が野生型と同様の基質特異性や触媒 能を有し、安定性も向上していることから、野生型と同 様にTrp濃度定量に有用であると考えた.そこで筆者ら は、VioA (C395A)を用いてヒト血漿中のTrp濃度定 量を行ったところ、VioA (C395A)を用いた酵素法の 結果はアミノ酸アナライザーを用いた機器分析法の結果 と非常に近い値を示した(表1).本手法は除タンパク質 などの前処理を行っておらず、VioA (C395A)はVioA 同様に、血漿中に含まれる夾雑成分の影響を受けにくい ことも確認できた.

VioA (C395A)の構造解析

VioA (C395A)の安定化機構の考察と,更なる安定 化に向けた知見を得るため,筆者らはVioA (C395A) のX線結晶構造解析に取り組んだ.種々の条件検討の結

図2. VioA野生型とVioA (C395A)の全体構造比較. VioA 野生型(灰色), VioA (C395A)(黒色). ※先行文献の図¹⁵⁾ を改変.

果, VioA (C395A) と補酵素FADの結晶を得ることに 成功し,最終的に分解能1.8 Åで立体構造を決定した¹⁵⁾. 2016年にFüllerらによって報告された野生型の構造¹⁸⁾ とVioA (C395A)のCα原子を重ね合わせると,平均 二乗偏差は0.858 Åであり,VioA (C395A)では野生 型でディスオーダーしている領域の電子密度が観察され た他,αヘリックス (残基97–115) に軽微な変化が見 られた(図2).一方で,変異を導入した395番目の残基 周辺における顕著な差は見られず,変異による周辺残基 への影響は少ないことが示唆された.

次に、この立体構造を用いて筆者らが評価した変異体 の中で、VioA (C395A) がもっとも高い熱安定性を示 した理由を考察した.野生型の構造で、Cys395の側鎖は、 他の6種類のシステイン残基と比較してもっとも溶媒露 出領域が大きい¹⁵⁾.一般的に溶媒露出したシステイン残 基の置換が熱安定性向上に対して有効であることが知ら れている²¹⁾. さらに、置換先としてアラニン残基に加え、 セリン残基も効果的であることが知られている²²⁾が、 VioAにおいてC395Sは野生型と比較して顕著な安定化 は見られなかった(図1). この理由としてCys395は、 基質ポケット入口に位置しており、疎水性クラスター形 成に寄与しているため、親水性のセリン残基への置換は アラニン残基と比較して、疎水性クラスターの構造維持 に不利であると推測した.

基質認識機構

VioAは高い基質特異性を有していることから、VioA の基質認識機構を解明することは学術的な知見に加え て、今後、特異性の高いアミノ酸代謝酵素を創出する際 に有用であると考えられる.そこで筆者らは、基質Trp をVioA (C395A)/FAD複合体の結晶に短時間ソーキ

図3. TrpのVioA (C395A) への結合と周辺残基の変化. Trp およびFADの電子密度 (メッシュ), VioA (C395A) /FAD (黒 色), VioA (C395A) /FAD/Trp (灰色). ※先行文献の図¹⁵⁾を 改変.

ングすることで、VioA (C395A), FADおよびTrpの 三者複合体構造を分解能1.8 Åで初めて決定し、VioA (C395A) に結合したTrpの電子密度を鮮明に確認する ことができた (図3). VioA (C395A) /FAD 2者複合体 との構造比較から,基質の結合による周辺の側鎖の構造 変化はほとんど見られなかった.さらに、VioA (C395A) とTrpの相互作用解析から、主鎖とFAD, Arg64, His163, Tyr309, Gly396およびTrp397, インドール 環とTyr143, Ala145, His163, Leu265, Val363およ びGly396が相互作用していた¹⁵⁾. このインドール環の 厳密な認識が、VioAの高い基質特異性に寄与している ことが強く示唆された.

また、VioAによる触媒反応の過程で脱離するTrpのα 位のH原子は補酵素FADのN5原子によってpi-sigma 相互作用で認識されており、2者の距離は2.47 Åであっ た. これはVioAが属する monoamine oxidase familyの 反応機構として従来提唱されているhydride transfer mechanismに矛盾するものでないが、最近では理論計 算によって新規反応機構:hydrogen-atom-coupled electron-transfer (HACET)も提唱されている²³⁻²⁴.本 研究で得られた構造は盛んに議論されている monoamine oxidase familyの反応機構解明に寄与することが期待で きる.

おわりに

本研究において,筆者らはVioAの保存安定性の向上 を目指して酵素改変を行い,野生型に対して約9倍の保 存安定性を有するVioA(C395A)を見いだした.VioA (C395A)は基質特異性,触媒能ともに野生型とほとん ど同等の性質を有しており、ヒト血漿中のTrp濃度を高 い正確性と精度で定量可能であり、産業応用に十分な性 質を備えていることを確認した. さらに安定化機構の解 明のため、VioA (C395A)の立体構造をX線結晶構造 解析によって決定した.設計した変異体の中でVioA (C395A)がもっとも高い安定性を示した理由として、 高い溶媒露出領域を有するC395の置換に加え、疎水性 クラスターを形成するC395の置換先としてアラニンが 最適であったことが構造情報から示唆された. さらに, 基質である Trp との複合体構造から、基質のインドール 環はVioAによって厳密に認識されており、VioAの高 い基質特異性を理解するうえで有益な情報が得られた. 本知見は、VioAだけではなく他のアミノ酸代謝酵素の 研究開発や産業応用にきわめて重要な基盤情報であり, 酵素法によるアミノ酸分析法の発展に大きく寄与するも のであると言える.

文 献

- 1) Campollo, O. et al.: Rev. Invest. Clin., 44, 513 (1992).
- 2) Huang, T. et al.: Anal. Chem., 70, 991 (1998).
- 3) Nakamura, K. et al.: Anal. Biochem., 234, 19 (1996).
- 4) Rivero, A. et al.: Clin. Chem. Lab. Med., 38, 773 (2000).
- 5) Suzuki, K. et al.: Hepatol. Res., 38, 267 (2008).
- 6) Lanza, I. R. et al.: PLoS One, 5, e10538 (2010).
- 7) Miyagi, Y. et al.: PLoS One, 6, e24143 (2011).
- 8) Consden, R. et al.: Biochem. J., 38, 224 (1944).
- Martin, A. J. and Synge, R. L. Biochem. J., 35, 1358 (1941).
- 10) Spackman, D. H. et al.: Anal. Chem., 30, 1190 (1958).
- 11) Shimbo, K. et al.: Rapid Commun. Mass Spectrom., 23, 1483 (2009).
- 12) Mangge, H. et al.: Obesity (Silver Spring), 22, 195 (2014).
- 13) Yamakado, M. et al.: Clin. Obes., 2, 29 (2012).
- 14) Coppen, A. et al.: Lancet, 2, 60 (1973).
- Yamaguchi, H. et al.: J. Biochem., DOI: https://doi.org/ 10.1093/jb/mvy065.
- 16) Furuya, Y. *et al.*: *Biosci. Biotechnol. Biochem.*, **64**, 1486 (2000).
- 17) Kameya, M. et al.: Anal. Biochem., 438, 124 (2013).
- 18) Fuller, J. J. et al.: J. Biol. Chem., 291, 20068 (2016).
- 19) Lai, H.-E. et al.: bioRxiv, (2017). DOI: https://doi. org/10.1101/202523
- 20) Nakaniwa, T. et al.: Biochemistry, 51, 8410 (2012).
- 21) Patel, S. B. et al.: Biochim. Biophys. Acta, 1696, 67 (2004).
- 22) Xia, X. et al.: J. Pharm. Sci., 104, 566 (2015).
- 23) Abe, Y. et al.: Phys. Chem. Chem. Phys., 19, 9811 (2017).
- 24) Ralph, E. C. et al.: Biochemistry, 45, 15844 (2006).