培養技術研究部会第4回技術セミナー

動物細胞培養のスケールアップ

2023年3月28日

村上 聖 次世代バイオ医薬品製造技術研究組合専務理事

液中培養技術の発展

固体培養

液面培養

培養細胞と生産物

[※]CHO:チャイニーズハムスタ**卵巣細胞**

大容量細胞培養槽

動物細胞培養技術の発展

(固定表面培養)

大腸菌

酵母

(浮遊培養)

付着依存性動物細胞 (担体表面培養)

5

スケールアップ

剪断ダメージ防止のため、攪拌翼先端速度を増加困難

攪拌翼先端速度制限(NDi)から、スケールアップに伴い 動力($P/V \propto N^3 Di^5 / V$ が急速に減少

								V_t : total volume
name	symbol	cell culture	microbia	-	P: agi	tation power	<i>V_w</i> : working volume	
		average [large scale]	average [large scale]	tank scale correlation	-			
aspect ratio	H/D [-]	1	1.8	$\propto V_t^{0.038}$				
working volume	<i>V_w</i> / <i>V_t</i> [-]	0.7		-	_			
heat transfer area	<i>A</i> / <i>V</i> _w [m ⁻¹]	5 [1 ~ 2]		$\propto V_t^{-0.32}$	_			
agitation power	P/V_w [kw/m ³]	4[1]	6[2]	$\propto V_t^{-0.25}$				
impeller spacing	<i>H_i/D_i</i> [-]	1.4		-				Y Y
impeller diameter	<i>D_i</i> / <i>D</i> [-]	0.5	0.4 [0.3]	$\propto V_t^{-0.034}$				
impeller tip speed	<i>U_i</i> [m/s]	2	5.5	$\propto V_t^{0.10}$			$\leftarrow D_i$	
					-			▶

代表的なスケールファクター

体積あたり撹拌動力	P_g/V	$\infty N^3 D i^5 / V$
総括物質移動容量係数	kLa	$\infty (Pg/V)^{0.4} Us^{0.5}$
撹拌翼先端速度	Ui	=NDi
液循環速度	Qi/V	$\infty NDi^3/V$
混合時間	tm	$\infty N^{-3/2} D i^{1/6}$
レイノルズ数	N _{Re}	∝NDi²
気泡発生、消滅ダメージ	k _{db0}	∞VVD
気泡上昇ダメージ	k _{dbr}	∝Us

- N: impeller rotation speed
- *D_i*: impeller diameter
- g_c : gravitational conversion constant

$$OTR = k_L a(C^* - C_L)$$

$$\boldsymbol{k}_{L}\boldsymbol{a} = \alpha \left(\frac{\boldsymbol{P}\boldsymbol{g}}{\boldsymbol{V}}\right)^{\beta} \left(\boldsymbol{U}_{\boldsymbol{S}}\right)^{\gamma}$$

微生物培養槽 $k_L a = 0.026 \left(\frac{P_g}{V} \right)^{0.4} (U_s)^{0.5}$ Van't Riet, 1983

OTR: volumetric oxygen transfer rate k_l : liquid phase mass transfer coefficient a: interfacial area per reactor volume C^* : equilibrium dissolved oxygen conc. C_1 : dissolved oxygen concentration P_a : gassed power V: reactor volume $U_{\rm s}$: gas superficial velocity α : proportionality constant

 β, γ : exponent constants

 $Q_i = W_i (\pi D_i)^2 N \propto N D_i^3$ $Q_i / V \propto N D_i^3 / V$

培養スケールアップの課題

▶ 全ての指標を同一としたスケールアップは不可能

▶ 小スケールでどれだけ裕度を持たせるかが重要

指標			200L	10,000L								
撹 拌	体積あたり 撹拌動力	Pgℕ	∝N³Di⁵/V	1.00	1.00	0.20	0.27	13.6	36.1	0.01		
	総括物質移動 容量係数	кLа	$\infty (Pg/V)^{0.4} Us^{0.5}$	1.00	1.92	1.00	1.14	5.45	8.06	0.24		
	撹拌翼先端速度	Ui	=NDi	1.00	1.54	0.90	1.00	3.68	5.10	0.27		
	液循環速度	Qi/V	∝NDi³/V	1.00	0.42	0.24	0.27	1.00	1.39	0.07		
	混合時間	t m	∝N ^{-3/2} Di ^{1/6}	1.00	2.22	3.19	2.96	1.24	1.00	7.07		
	レイノルズ数	N _{Re}	∝NDi²	1.00	5.69	3.30	3.68	13.6	18.8	1.00		
通	気泡発生、消滅 ダメージ	k _{db0}	\propto VVD	1.00							1.00	0.27
気	気泡上昇ダメージ	k _{dbr}	∝Us	1.00	3.68				1.00			
				Ui: 撹拌翼先端速度 N _{re} : レイノルズ数 Qi: 撹拌翼吐出量 K _{db0} : 気泡発生、消滅ダメージ t _m : 混合時間 K _{dbr} : 気泡上昇ダメージ						17		

スケールアップウィンドー(デザインスペース)

▶ スケールアップウィンドーによる異なるスケール間の同一性評価

図6. スケールアップウィンドー. □, 培養可能領域; ◇, 小スケールでの最適運転条件; ◆, 大スケールでの最適運転条件.

<u>動物細胞培養のスケールアップはもう必要無いのか?</u>

✓ 既に大容量までスケールアップ済み
✓ 生産効率向上により小スケールで十分
✓ 連続培養により小型培養槽で生産可能

スケールアップにおけるデザインスペースの変化

▶ スケールアップによりCO2除去悪化、槽内混合低下、デザインスペース縮小

細胞高密度化におけるデザインスペースの変化

▶ 細胞高密度化によりO2供給、CO2除去低下、デザインスペース縮小

低剪断耐性細胞におけるデザインスペースの変化

▶ 低剪断耐性細胞によりCO2除去悪化、槽内混合低下、デザインスペース縮小

^{デザインスペース作成に必要なパラメータ} DCO₂の細胞増殖への影響

デザインスペース作成に必要なパラメータ 液中通気による液面泡沫層の発生

化学工学的計算式と数值解析(CFD)

デザインスペース描画

培養槽構造詳細評価

Characteristics	Empirio	al Equations	Elemental F	Parameters	Overall Evaluation			
Agitation Power	Pg/V	$\propto \frac{n^3 Di^5}{V}$	Turbulent Energy Dissipation Rate	ρε	Total Turbulent Energy Dissipation Rate	$\frac{1}{V} \iiint (\rho \varepsilon) dx dy dz$		
Mass Transfer	k _L a	$\propto \left(\frac{Pg}{V}\right)^{0.4} Us^{0.5}$	Local k _L a	$(\alpha/Db)f(Sc, v,k, \varepsilon)$	Total <i>k_La</i>	$\frac{1}{V} \iiint (k_L a) dx dy dz$		
Hydrodynamic Intensity	(dU/dz) _{max}	∝ nDi	Kolmogoroff Eddy Length Scale	$(v^3/\varepsilon)^{1/4}$	Minimum Eddy Length Scale	$\left(\left(\frac{\nu^{3}}{\varepsilon}\right)^{1/4}\right)_{\min}$		
Homogeneity	Qi/V	$\propto \frac{n Di^{3}}{V}$	Local Concentration	С	Standard Deviation of Concentration	$\sqrt{\frac{1}{V}} \iiint \left(C - \overline{C}\right)^2 dx dy dz$		

CFDによる総括物質移動容量係数(kLa)の計算

CFDによる流体力学的損傷の評価

乱流エネルギー、渦長さから細胞ダメージを評価

31

スケールアップとPMI (プロセス質量強度)低減

① 培養スケールあたり生産性=細胞密度×細胞あたりタンパク生産量・【設備投資】

② PMI= 使用した材料の全質量 = 培地消費量+培地損失 製品の質量 = タンパク生産量 ・・・・【環境負荷、運転コスト】

プロセス質量強度(Process Mass Intensity, PMI):指定された質量の製品を製造するために使用される材料の総質量*1)

1) Green Chemistry Institute's Pharmaceutical Roundtable, Jimenez-Gonzalez, C. et al. Org. Process Res. Dev., 15, 4, 912–917 2011

プロセスモデルによるスケールアップの生物学的影響評価

✓ プロセスモデルを検証実験データへの仮説提供、実験効率化に使用

*1) K. Okamura, *et.al.*, Hybrid modeling of CHO cell cultivation in monoclonal antibody production with an impurity generation module, *Industrial & Engineering Chemistry Research*, **61**(40), 14898-14909 (2022)

動物細胞培養スケールアップの今後

<u>動物細胞培養のスケールアップはもう必要無いのか?</u>

▶ 培養スケールの大小ではなく細胞の呼吸、流体力、混合、発泡等の各デザインスペースの最適化が重要

▶ 小型培養槽でも生産性向上のためにはスケールアップと同様の検討が必要

▶ 連続培養の小型培養槽でもPMIを考慮した最適な培養 運転が必要

▶ スケールアップにおける培養環境の最適化だけでなく、 細胞の生物応答の理解促進が必要

培養技術研究部会第4回技術セミナー

動物細胞培養のスケールアップ

2023年3月28日

村上 聖 次世代バイオ医薬品製造技術研究組合専務理事